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L16 Letters to the Editor 

Finally, we consider the modiJied direct correlation function CA(x,, x,, N ,  Q, y), 
defined in terms of G2(x1, x,, N ,  Q, y )  by 

dx  O ~ ( X ,  x,)~"(x, x,) -6(x,-x2). (25) s 
Its space average E(r, p ,  7 )  can be defined like (2). We define the weighted direct 
correlation function 

Then, for one-phase ordered states, one can deduce from (ZO), (22) and (25) that 
1 r  

For one-phase fluid states one just puts n, = p. Hence, for all one-phase states, we 
have our most important result 

E W ( S ,  p )  = -PK(S) for s # 0 (28) 
which has been obtained in different forms by Lebowitz and Percus (1963) and 
Lebowitz et al. (1965). 

I am grateful to Professor 0. Penrose for helpful advice, and to The  Royal 
Commission for the Exhibition of 185 1 for financial support. 

Mathematics Department, 
Imperial College, 
London. 
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26th January 1970 
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Simplification of the direct interaction equations for 
turbulent shear flow 

Abstract. Simplifying assumptions can be made which reduce the full stat- 
istical equations for turbulent shear flow to differential equations which are 
amenable to computation. 

Kraichnan (1966-this gives references to his earlier papers) first published his 
Direct Interaction (DI) method for closing the Navier-Stokes equations in 1958, and 
Edwards (1964) introduced the rather similar Fokker-Planck method six years later. 



Letters to the Editor L17 

At the moment these methods cannot be justified formally, but increasingly it is being 
accepted that both their nature and the results which they give are reasonable. 

So far, work has been more or less confined to homogeneous isotropic turbulence, 
since this rather artificial situation simplifies the algebra very greatly but still pre- 
serves the essence of the problem. In  principle, there is no problem in extending D I  
to real situations such as turbulent shear flow, and Kraichnan (1964) has written out 
the governing equations. In  practice, the dimensionality of the problem increases so 
much when the restrictions of homogeneity and isotropy are dropped that the equa- 
tions have so far resisted analysis: they are probably too big for existing computers. 
The  purpose of this letter is to introduce additional approximations which, it is 
hoped, will simplify the D I  equations for real flows sufficiently to allow solutions to be 
obtained. 

As an example I shall consider fully developed flow in a parallel-sided channel, 
but the methods should be equally applicable to any other problem. The correlation 
function pij( x, x’) = (gi( X) Ej( x’)) is then of the form 

x’) = g i j ( x  - x‘, Y ) .  

Here the tilde denotes a fluctuation velocity and Y = 4(x2+x2’), the 2 direction 
being normal to the channel walls. The  first step is to Fourier transform with respect 
to the difference coordinate r = x- x’, and the calculations are made on the ‘semi- 
transform’ qtr(k,  Y) .  This can be divided according to 

Qrr(k, y3 = 91rS(k, Y)+ql,”(k, Y )  (1) 
where the S and A components are respectively symmetric and antisymmetric in 
k space. The  qs component is responsible for the energy of the turbulence, while qA 
is responsible for the Reynolds stress. The  first assumption is that qs is isotropic 

while qA is obtained by applying a uniform strain to qs (see Crow 1967). There 
must of course be other components present, with other angular symmetries in 
k space: I am guessing that they have relatively little effect on the turbulent intensity 
and on the Reynolds stress. 

The  next assumption is that the shape of the spectrum functionf(k, Y )  is the same 
at all points of the flow, and that only the intensity and the width vary from one point 
to another. Some assumption of this form seems essential if the calculation is ever 
to be made simple enough for engineering-type applications. The  spectral width 
specifies K( Y ) ,  the reciprocal of the local length scale, while the intensity is conven- 
iently given in terms of the local dissipation a( Y) .  We therefore assume 

C 
f(k, Y )  = g {8( Y)}2‘3 {K( Y)}-11/3 F (3) 

where C is the Kolmogorov constant while F(x) is a universal function which tends 
to x-11/3 for large x, ensuring that f ( k ,  U )  goes over to the inertial 
range form (C/4n)b2/3K-11/3 for large K. Similar assumptions are made about qA 
and about Kraichnan’s infinitesimal response function. The  intensity of qA is the 
Reynolds stress T( Y )  and, in the limit of zero viscosity, this is specified by Reynolds’ 
equation. This makes an assumption of the form (3) particularly convenient. 

A2 
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Finally, I assume that the variation off and other spectral functions with k is much 
stronger than the variation with Y. This assumption is used to simplify the operator 
Pijm( 2 / 2 4  which appears in the configuration space version of the DI equations (see 
Kraichnan 1964). We put 

where r is the separation x- x', and treat the second term as a small perturbation. 
After Fourier-transforming with respect to r only, Pajm becomes 

further terms being ignored. The  form of Pijm(k) is given by Kraichnan (1959), 
while Rijm(k) is a new function. 

With all these assumptions the DI energy equation (the equation for the trace of 
q when r = 0) simplifies enormously, and becomes 

U( Y )  being the mean velocity. TU' gives the production of turbulent energy, while 
d represents the dissipation of this energy. The  two gradient-diffusion terms represent 
the spatial transport of this energy. They vanish in a logarithmic region in which 
both d and K are proportional to 1/Y. This is particularly satisfactory, since 
experiments indicate that there is no net transport of turbulent energy in such a 
region. The  constants A, and A, are determined once the forms of functions such as 
F(z)  are specified, and in this respect the present work is quite different from all 
previous theories of shear flow turbulence. 

Equation (5) determines the turbulent intensity, and there is a similar relation 
between T and U' for the off-diagonal components of q which actually determines 
U' (T being known). A third equation is needed to determine K,  and the form which 
this should take is being studied. Consideration is also being given to the point, 
made by Bradshaw et al. (1967), that the spatial transport of turbulent energy is partly 
a gradient process and is not wholly of the gradient-diffusion type. It seems that (5) 
is only valid for the small eddies, and that gradient terms should indeed be added to 
this equation to allow for the 'constriction' of the big eddies by the finite size of the 
system. In  due course I hope to publish a paper dealing with these two points. In  
this paper I shall also try to justify statements which, because space is limited, have 
had to be made without proof in this letter. 

Department of Nuclear Engineering, 
Queen Mary College, 
Mile End Road, 
London El. 

D. C. LESLIE 
19th November 1969 
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